SOME OPEN QUESTIONS ON A RESULT OF B.H. NEUMANN

Francesco G. Russo

Abstract. A subgroup K of a group G is called almost normal in G if it has finitely many conjugates in G. The influence of these subgroups is strong on the group structure. Indeed, B.H. Neumann proves in the 1955 that $|G : Z(G)|$ is finite if and only if each K is almost normal in G. Many authors have successively generalized this result and the present survey makes the point of the situation, illustrating a new perspective for wider generalizations.

Mathematics Subject Classification (2000). 20F24; 20C07; 20D10.

Keywords. Dietzmann classes; anti-XC-groups; Chernikov groups.

1. A brief overview

In [1] R. Baer describes the structure of the groups with finite conjugacy classes, or FC-groups. Some years later B.H. Neumann writes the two papers [34] and [35] which will be classic works in the theory of FC-groups. See also [41, Vol.I, §4.3]. It is a common opinion that [1, 34, 35] introduce a new approach of study of the infinite groups. Some results, which originated from [1, 34, 35], are in [2, 7, 8, 9, 10, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49]. The list is very partial and reflects only some topics which we will illustrate successively.

The investigations in [34] and [35] differ from those in [1] for two main motivations. The first deals with the bounds of the finite conjugacy classes (see [41, Theorem 4.35] or [34, Theorem 3.1]). The second deals with the covering properties of a group by means of suitable subgroups (see [41, Theorem 4.16, Lemma 4.17]). More precisely, [41, Theorem 4.35] states that a group G has finite index $|G : Z(G)|$ if and only if the conjugacy classes of G are finite and bounded, or equivalently, if and only if G' is finite. [41, Theorem 4.16] states that $|G : Z(G)|$ is finite if and only if G has a finite covering consisting of abelian subgroups. It is clear the connection among the theory of the coverings of subgroups and that of...
FC-groups. Variations on these themes have interested many authors in different contexts in the last years. See for instance [5, 6, 7, 8, 9, 10, 17, 18, 19].

2. Anti-XC-groups and Neumann’s Theorem

Assume from now that \(\mathcal{X} \) denotes an arbitrary class of groups which is closed with respect to forming subgroups and quotients, \(\mathfrak{F} \) is the class of all finite groups, \(\mathfrak{F}_\pi \) is the class of all finite \(\pi \)-groups (\(\pi \) set of primes), \(\mathfrak{C} \) is the class of all Chernikov groups, \(\mathfrak{P} \mathfrak{F} \) is the class of all polycyclic-by-finite groups, \(\mathfrak{S}_2 \mathfrak{F} \) is the class of all (soluble minimax)-by-finite groups. It is easy to check that

\[
\mathfrak{F} \subseteq \mathfrak{C} \subseteq \mathfrak{S}_2 \mathfrak{F}, \quad \mathfrak{F} \subseteq \mathfrak{P} \mathfrak{F} \subseteq \mathfrak{S}_2 \mathfrak{F}, \quad \mathfrak{C} \cap \mathfrak{P} \mathfrak{F} = \mathfrak{F}.
\]

See [30, 31, 32, 41, 42] for details.

Given a positive integer \(r \) and a group \(G \), we recall that the operator \(L \), defined by

\[
L \mathcal{X} = \{ G \mid \langle g_1, g_2, \ldots, g_r \rangle \in \mathcal{X}, \forall g_1, g_2, \ldots, g_r \in G \},
\]

from \(\mathcal{X} \) to \(\mathcal{X} \) is called local operator for \(\mathcal{X} \). See [31, \(\mathcal{C} \), p.54]. We recall that the operator \(H \), which associates to \(\mathcal{X} \) the class of hyper-\(\mathcal{X} \)-groups is called extension operator. See [31, \(\mathcal{E} \), p.60]. Notations and terminology follow [30, 31, 32, 41, 42].

As already recalled in the abstract, a subgroup \(K \) of a group \(G \) is called almost normal in \(G \) if \(K \) has finitely many conjugates in \(G \), that is, if \(|G:N_G(K)| \) is finite. Neumann’s Theorem [41, Chapter 4, Vol.I, p.127] shows that \(G \) has each \(K \) which is almost normal in \(G \) if and only if \(G/Z(G) \in \mathfrak{F} \). We have

\[
N_G(Cl_G(K)) = \text{core}_G(N_G(K)) = \bigcap_{x \in G} N_G(K)^x = \bigcap_{x \in G} N_G(K^x),
\]

where \(Cl_G(K) \) is the set of conjugates of \(K \) in \(G \). \(|G:N_G(K)| = |Cl_G(K)| \) is finite if and only if \(G/\text{core}_G(N_G(K)) \in \mathfrak{F} \). In [25, 26] \(G \) has \(\mathfrak{F} \)-classes of conjugate subgroups, if \(G/\text{core}_G(N_G(K)) \in \mathfrak{F} \) for each \(K \) in \(G \).

Thus Neumann’s Theorem can be reformulated as follows.

Theorem 2.1 (Neumann’s Theorem). A group \(G \) has \(\mathfrak{F} \)-classes of conjugate subgroups if and only if \(G/Z(G) \in \mathfrak{F} \).

See [26, Introduction]. More generally, \(G \) has \(\mathcal{X} \)-classes of conjugate subgroups, if \(G/\text{core}_G(N_G(K)) \in \mathcal{X} \) for each \(K \) in \(G \). In this context there are two questions of great interest.

Open Question 2.2. For which choice of \(\mathcal{X} \), in a group \(G \) the condition to have \(\mathcal{X} \)-classes of conjugate subgroups is equivalent to \(G/Z(G) \in \mathcal{X} \)?

Theorem 2.1 answers positively Question 2.2 for \(\mathcal{X} = \mathfrak{F} \). We know a positive answer of Question 2.2 also for \(\mathcal{X} = \mathfrak{P} \mathfrak{F} \) from [25, Main Theorem]. Indeed, this result states that a group \(G \) has \(\mathfrak{P} \mathfrak{F} \)-classes of conjugate subgroups if and only if \(G/Z(G) \in \mathfrak{P} \mathfrak{F} \). Unfortunately, Question 2.2 has a negative answer for \(\mathcal{X} = \mathfrak{C} \). [26, Main Theorem] describes groups having \(\mathfrak{C} \)-classes of conjugate subgroups and [26,
Section 4] shows an example of a group having C-classes of conjugate subgroups with $G/Z(G) \not\in \mathcal{C}$. Therefore Question 2.2 should be strengthened as follows.

Open Question 2.3. What is the structure of a group having X-classes of conjugate subgroups?

Question 2.3 is partially answered in [44, Main Theorem], where there is a description of the groups having $S_2\mathcal{F}$-classes of conjugate subgroups. Here some restrictions are done and so Question 2.2 could be answered positively. This is an open problem.

Recall that $Z_X(G) = \{x \in G \mid G/C_G(\langle x \rangle^G) \in \mathcal{X}\}$ is a characteristic subgroup of G, called XC-center of G. See [31, Definition B.1, Proposition B.2]. G is called XC-group if it coincides with its XC-center. FC-groups, CC-groups, PC-groups and MC-groups are obtained when we consider respectively \mathcal{F}, \mathcal{C}, \mathcal{PS}, $\mathcal{S}_2\mathcal{F}$. These are studied in [2, 14, 28, 30, 31, 32, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47]. Finally, G is called HXC-group if $G = Z_{HX}(G)$.

If G has \mathcal{F}-classes of conjugate subgroups, then it is an FC-group. From [26, Lemma 2.3], if G has \mathcal{C}-classes of conjugate subgroups, then it is a CC-group. From [25, Corollary 2.7], if G has \mathcal{PS}-classes of conjugate subgroups, then it is a PC-group. From [44, Lemma 2.4], if G has $\mathcal{S}_2\mathcal{F}$-classes of conjugate subgroups, then it is an MC-group. These facts can be generalized in the next form.

Lemma 2.4. ([46, Lemma 2.1]) Assume that $\mathcal{F}_X = \mathcal{X}$. If G has X-classes of conjugate subgroups, then $Z_X(G) = G$.

We recall that \mathcal{X} is called Dietzmann class, if for every group G and $x \in G$, the following implication is true:

\[(*) \quad \text{if} \ x \in Z_X(G) \text{ and } (x) \in \mathcal{X}, \text{ then } \langle x \rangle^G \in \mathcal{X}.\]

See [31, Definitions B.1 and B.6] or [11]. Dietzmann classes are studied in [30, 31, 32, 42]. FC-groups form a Dietzmann class as we note in [31, Proposition D.3, b)]. In particular, this is true for periodic PC-groups, which are obviously FC-groups. Note that \mathcal{F} is a Dietzmann class (see [31, Proposition B.7, b)] but $\mathcal{P}\mathcal{S}$ is not a Dietzmann class (see [31, Example B.8, c)]). Unfortunately, it is not known whether PC-groups, CC-groups or MC-groups form a Dietzmann class. See always [30, 31, 32, 42]. But it is easy to check that PC-groups, CC-groups or MC-groups extend locally the class of FC-groups. Therefore, the next result is significant.

Theorem 2.5. ([31, Theorem E.3]) If $\mathcal{F}_\pi \subseteq \mathcal{X} \subseteq \mathcal{L}\mathcal{F}_\pi$, then the HXC-groups form a Dietzmann class.

From Lemma 2.4 and Theorem 2.5, it is meaningful to ask whether we may strengthen Neumann’s Theorem, considering the following property:

\[(**) \quad \text{if} \ K \text{ is a non-finitely generated subgroup of a group } G, \text{ then } G/core_G(N_G(K)) \in \mathcal{X}, \text{ where } \mathcal{F}_\pi \subseteq \mathcal{X} \subseteq \mathcal{L}\mathcal{F}_\pi.\]
G is called anti-XC-group if it satisfies (**) They are studied in [46] Anti-FC-groups are described in [12] Anti-CC-groups and anti-PC-groups are described in [45] We cannot forget in this line of research [20] whose methods are used both in [12] and [20] On another hand, the ideas and the methods go back to [33] and deal with the structure of groups with given properties of a system of subgroups Among the impressive literature in this topic, we mention [3, 4, 13, 15, 21, 22, 23, 24, 27, 29, 37, 51].

3. Locally finite case

Following [12, 20, 45], in this Section we will give a brief description of the locally finite groups satisfying (**) They are discussed in [46] The considerations in Section 2 allow us to prove easily the next two results.

Lemma 3.1. Subgroups and quotients of anti-XC-groups are anti-XC-groups.

Lemma 3.2. If G is an anti-XC-group and $Z_X(G) = G$, then G has X-classes of conjugate subgroups.

Overlapping [45, Lemma 3.3] and from Lemmas 3.1 and 3.2, we have as follows.

Lemma 3.3. Assume that x is an element of the anti-XC-group G. If $A = Dr_{i \in I} A_i$ is a subgroup of G consisting of (x)-invariant nontrivial direct factors A_i, $i \in I$, with infinite index set I, then x belongs to $Z_X(G)$.

Lemma 3.3 has the next consequence, which is straightforward.

Corollary 3.4. Assume that G is an anti-XC-group and $A = Dr_{i \in I} A_i$ is a subgroup of G consisting of infinitely many nontrivial direct factors. Then A is contained in $Z_X(G)$.

The next lemma overlaps [45, Lemma 3.7].

Lemma 3.5. Assume that g is an element of the anti-XC-group G and $A = Dr_{i \in I} A_i$ is a subgroup of G, with I as in Lemma 2.3. If $g \in N_G(A)$ and $g^n \in C_G(A)$ for some positive integer n, then g belongs to $Z_X(G)$.

Combining the above Lemmas 3.1, 3.2, 3.3, 3.5 and Corollary 3.4 we get the next corollary, whose proof overlaps [45, Corollary 3.9].

Corollary 3.6. If the anti-XC-group G has an abelian torsion subgroup that does not satisfy the minimal condition on its subgroups, then all elements of finite order belong to $Z_X(G)$.

All the above considerations allow us to describe the locally finite case.

Theorem 3.7. If G is a locally finite anti-XC-group, then either G has X-classes of conjugate subgroups or G is a Chernikov group.
Proof. From Lemmas 3.1, 3.2, 3.3, 3.5 and Corollaries 3.4, 3.6, we may argue as in [45, Theorem 3.12, Proof], considering $X, Z_X(G)$ and the result follows.

Theorem 3.7 extends [45, Theorems 3.11 and 3.12] and similar situations in [12, 20]. The locally nilpotent case can be treated in an analogous way, invoking some results in [50].

References

Francesco G. Russo
Department of Mathematics, University of Palermo, via Archirafi 34, Palermo, Italy
e-mail: francescog.russo@yahoo.com